Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38743471

RESUMO

Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.


Assuntos
Rhizobium , Simbiose , Rhizobium/genética , Rhizobium/classificação , Fabaceae/microbiologia , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Guias como Assunto
2.
Syst Appl Microbiol ; 46(4): 126433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207476

RESUMO

Inga vera and Lysiloma tree legumes form nodules with Bradyrhizobium spp. from the japonicum group that represent novel genomospecies, for which we describe here using genome data, symbiovars lysilomae, lysilomaefficiens and ingae. Genes encoding Type three secretion system (TTSS) that could affect host specificity were found in ingae but not in lysilomae nor in lysilomaefficiens symbiovars and uptake hydrogenase hup genes (that affect nitrogen fixation) were observed in bradyrhizobia from the symbiovars ingae and lysilomaefficiens. nolA gene was found in the symbiovar lysilomaefficiens but not in strains from lysilomae. We discuss that multiple genes may dictate symbiosis specificity. Besides, toxin-antitoxin genes were found in the symbiosis islands in bradyrhizobia from symbiovars ingae and lysilomaefficiens. A limit (95%) to define symbiovars with nifH gene sequences was proposed here.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Nódulos Radiculares de Plantas , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Simbiose/genética , Análise de Sequência de DNA
3.
Syst Appl Microbiol ; 45(6): 126358, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36174465

RESUMO

Scorpions were among the first animals on land around 430 million years ago. Like many arachnids, scorpions have evolved complex venoms used to paralyze their prey and for self-defense. Here we sequenced and analyzed the metagenomic DNA from venom glands from Vaejovis smithi scorpions. A metagenome-assembled genome (MAG) of 624,025 bp was obtained corresponding to the previously reported Scorpion Group 1 (SG1). The SG1 genome from venom glands had a low GC content (25.8%) characteristic of reduced genomes, many hypothetical genes and genes from the reported minimal set of bacterial genes. Phylogenomic reconstructions placed the uncultured SG1 distant from other reported bacteria constituting a taxonomic novelty. By PCR we detected SG1 in all tested venom glands from 30 independent individuals. Microscopically, we observed SG1 inside epithelial cells from the venom glands using FISH and its presence in scorpion embryos suggested that SG1 is transferred from mother to offspring.


Assuntos
Bactérias , Escorpiões , Animais , Escorpiões/genética , Escorpiões/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética , Metagenômica
4.
Microb Biotechnol ; 14(4): 1282-1299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33320440

RESUMO

Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.


Assuntos
Endófitos , Herbivoria , Animais , Fungos , Desenvolvimento Vegetal , Plantas
5.
Syst Appl Microbiol ; 43(5): 126106, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847781

RESUMO

Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.


Assuntos
Produtos Agrícolas/microbiologia , Domesticação , Grão Comestível/microbiologia , Fabaceae/microbiologia , Microbiota
6.
Syst Appl Microbiol ; 42(4): 517-525, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31176475

RESUMO

Plant roots are inhabited by a large diversity of microbes, some of which are beneficial for the growth of plants and known as plant growth promoting rhizobacteria (PGPR). In this work, we designed a multispecies inoculum of PGPRs containing Rhizobium phaseoli, Sinorhizobium americanum and Azospirillum brasilense nitrogen-fixing strains and other plant-growth promoting bacteria such as Bacillus amyloliquefaciens and Methylobacterium extorquens. We evaluated the effect of this group of bacteria on the growth of one-month-old maize plants. The multispecies inoculum exerted a beneficial effect on maize plants that was greater than that obtained with single-bacteria. Using the same multispecies inoculant, acetylene reduction was recorded in 5-day-old roots indicating active nitrogen fixation by bacteria in maize. Azospirillum nitrogen fixation was lower than that obtained with the multispecies inoculum. We focused on the analysis of R. phaseoli gene expression in presence of other PGPRs. Many R. phaseoli up- regulated genes in roots in the presence of other bacteria are hypothetical, showing our poor knowledge of bacteria-bacteria interactions. Other genes indicated bacterial nutrient competition and R. phaseoli stress. Differentially expressed transcriptional regulators were identified that may be key in bacteria-bacteria interaction regulation. Additionally, gene expression was analyzed from Azospirillum but not from sinorhizobia and methylobacteria due to the low number of transcripts obtained from maize roots. The metatranscriptomic analysis from maize roots showed expression of Azospirillum nif genes in the presence of PGPR bacteria. Our hypothesis is that other bacteria stimulate Azospirillum capacity to fix nitrogen and this should be further explored.


Assuntos
Bactérias/genética , Interações Microbianas , Fixação de Nitrogênio/genética , Reguladores de Crescimento de Plantas/genética , Zea mays/microbiologia , Bactérias/metabolismo , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Microbiota , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
7.
Life (Basel) ; 9(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609847

RESUMO

The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.

8.
Syst Appl Microbiol ; 42(3): 373-382, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30612723

RESUMO

Phaseolus dumosus is an endemic species from mountain tops in Mexico that was found in traditional agriculture areas in Veracruz, Mexico. P. dumosus plants were identified by ITS sequences and their nodules were collected from agricultural fields or from trap plant experiments in the laboratory. Bacteria from P. dumosus nodules were identified as belonging to the phaseoli-etli-leguminosarum (PEL) or to the tropici group by 16S rRNA gene sequences. We obtained complete closed genomes from two P. dumosus isolates CCGE531 and CCGE532 that were phylogenetically placed within the tropici group but with a distinctive phylogenomic position and low average nucleotide identity (ANI). CCGE531 and CCGE532 had common phenotypic characteristics with tropici type B rhizobial symbionts. Genome synteny analysis and ANI showed that P. dumosus isolates had different chromids and our analysis suggests that chromids have independently evolved in different lineages of the Rhizobium genus. Finally, we considered that P. dumosus and Phaseolus vulgaris plants belong to the same cross-inoculation group since they have conserved symbiotic affinites for rhizobia.


Assuntos
Phaseolus/microbiologia , Filogenia , Rhizobium/classificação , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Evolução Biológica , DNA Bacteriano/genética , Genes Bacterianos/genética , Variação Genética , Genoma Bacteriano/genética , México , Hibridização de Ácido Nucleico , Phaseolus/classificação , Plasmídeos/genética , RNA Ribossômico 16S/genética , Replicon/genética , Rhizobium/química , Rhizobium/fisiologia , Análise de Sequência de DNA
9.
Front Microbiol ; 9: 1794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30140262

RESUMO

Cereals such as maize, rice, wheat and sorghum are the most important crops for human nutrition. Like other plants, cereals associate with diverse bacteria (including nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical fertilizers are used in cereals, it has always been desirable to promote biological nitrogen fixation in such crops. The quest for nitrogen fixation in cereals started long ago with the isolation of nitrogen-fixing bacteria from different plants. The sources of diazotrophs in cereals may be seeds, soils, and even irrigation water and diazotrophs have been found on roots or as endophytes. Recently, culture-independent molecular approaches have revealed that some rhizobia are found in cereal plants and that bacterial nitrogenase genes are expressed in plants. Since the levels of nitrogen-fixation attained with nitrogen-fixing bacteria in cereals are not high enough to support the plant's needs and never as good as those obtained with chemical fertilizers or with rhizobium in symbiosis with legumes, it has been the aim of different studies to increase nitrogen-fixation in cereals. In many cases, these efforts have not been successful. However, new diazotroph mutants with enhanced capabilities to excrete ammonium are being successfully used to promote plant growth as commensal bacteria. In addition, there are ambitious projects supported by different funding agencies that are trying to genetically modify maize and other cereals to enhance diazotroph colonization or to fix nitrogen or to form nodules with nitrogen-fixing symbiotic rhizobia.

10.
Genome Biol Evol ; 9(9): 2237-2250, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605507

RESUMO

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6 Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.


Assuntos
Hemípteros/microbiologia , Fixação de Nitrogênio , Rhodocyclaceae/classificação , Simbiose , Animais , Feminino , Genoma Bacteriano , Ovário/microbiologia , Filogenia , Rhodocyclaceae/isolamento & purificação
11.
Syst Appl Microbiol ; 38(4): 287-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25660942

RESUMO

Phylogenomic analyses showed two major superclades within the family Rhizobiaceae that corresponded to the Rhizobium/Agrobacterium and Shinella/Ensifer groups. Within the Rhizobium/Agrobacterium group, four highly supported clades were evident that could correspond to distinct genera. The Shinella/Ensifer group encompassed not only the genera Shinella and Ensifer but also a separate clade containing the type strain of Rhizobium giardinii. Ensifer adhaerens (Casida A(T)) was an outlier within its group, separated from the rest of the Ensifer strains. The phylogenomic analysis presented provided support for the revival of Allorhizobium as a bona fide genus within the Rhizobiaceae, the distinctiveness of Agrobacterium and the recently proposed Neorhizobium genus, and suggested that R. giardinii may be transferred to a novel genus. Genomics has provided data for defining bacterial-species limits from estimates of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH). ANI reference values are becoming the gold standard in rhizobial taxonomy and are being used to recognize novel rhizobial lineages and species that seem to be biologically coherent, as shown in this study.


Assuntos
Agrobacterium/classificação , Agrobacterium/genética , Genoma Bacteriano/genética , Rhizobium/classificação , Rhizobium/genética , DNA Bacteriano/genética , Genômica , Filogenia
12.
BMC Genomics ; 15: 575, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25005495

RESUMO

BACKGROUND: Symbiosis genes (nod and nif) involved in nodulation and nitrogen fixation in legumes are plasmid-borne in Rhizobium. Rhizobial symbiotic variants (symbiovars) with distinct host specificity would depend on the type of symbiosis plasmid. In Rhizobium etli or in Rhizobium phaseoli, symbiovar phaseoli strains have the capacity to form nodules in Phaseolus vulgaris while symbiovar mimosae confers a broad host range including different mimosa trees. RESULTS: We report on the genome of R. etli symbiovar mimosae strain Mim1 and its comparison to that from R. etli symbiovar phaseoli strain CFN42. Differences were found in plasmids especially in the symbiosis plasmid, not only in nod gene sequences but in nod gene content. Differences in Nod factors deduced from the presence of nod genes, in secretion systems or ACC-deaminase could help explain the distinct host specificity. Genes involved in P. vulgaris exudate uptake were not found in symbiovar mimosae but hup genes (involved in hydrogen uptake) were found. Plasmid pRetCFN42a was partially contained in Mim1 and a plasmid (pRetMim1c) was found only in Mim1. Chromids were well conserved. CONCLUSIONS: The genomic differences between the two symbiovars, mimosae and phaseoli may explain different host specificity. With the genomic analysis presented, the term symbiovar is validated. Furthermore, our data support that the generalist symbiovar mimosae may be older than the specialist symbiovar phaseoli.


Assuntos
Genoma Bacteriano , Rhizobium etli/genética , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Mimosa/genética , Fixação de Nitrogênio/genética , Filogenia , Plasmídeos/genética , Plasmídeos/metabolismo , Rhizobium etli/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Simbiose/genética
13.
Front Plant Sci ; 4: 188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785373

RESUMO

An emphasis is made on the diversity of nutrients that rhizosphere bacteria may encounter derived from roots, soil, decaying organic matter, seeds, or the microbial community. This nutrient diversity may be considered analogous to a buffet and is contrasting to the hypothesis of oligotrophy at the rhizosphere. Different rhizosphere bacteria may have preferences for some substrates and this would allow a complex community to be established at the rhizosphere. To profit from diverse nutrients, root-associated bacteria should have large degrading capabilities and many transporters (seemingly inducible) that may be encoded in a significant proportion of the large genomes that root-associated bacteria have. Rhizosphere microbes may have a tendency to evolve toward generalists. We propose that many genes with unknown function may encode enzymes that participate in degrading diverse rhizosphere substrates. Knowledge of bacterial genes required for nutrition at the rhizosphere will help to make better use of bacteria as plant-growth promoters in agriculture.

14.
J Bacteriol ; 194(22): 6310-1, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23105056

RESUMO

We present the genome sequence of Rhizobium sp. strain CCGE510, a nitrogen fixing bacterium taxonomically affiliated with the R. leguminosarum-R. etli group, isolated from wild Phaseolus albescens nodules grown in native pine forests in western Mexico. P. albescens is an endangered bean species phylogenetically related to P. vulgaris. In spite of the close host relatedness, Rhizobium sp. CCGE510 does not establish an efficient symbiosis with P. vulgaris. This is the first genome of a Rhizobium symbiont from a Phaseolus species other than P. vulgaris, and it will provide valuable new insights about symbiont-host specificity.


Assuntos
Genoma Bacteriano , Phaseolus/microbiologia , Rhizobium/classificação , Rhizobium/genética , Simbiose , Espécies em Perigo de Extinção , Dados de Sequência Molecular , Phaseolus/classificação
15.
Plasmid ; 68(3): 149-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22813963

RESUMO

In bacteria, niche adaptation may be determined by mobile extrachromosomal elements. A remarkable characteristic of Rhizobium and Ensifer (Sinorhizobium) but also of Agrobacterium species is that almost half of the genome is contained in several large extrachromosomal replicons (ERs). They encode a plethora of functions, some of them required for bacterial survival, niche adaptation, plasmid transfer or stability. In spite of this, plasmid loss is common in rhizobia upon subculturing. Rhizobial gene-expression studies in plant rhizospheres with novel results from transcriptomic analysis of Rhizobium phaseoli in maize and Phaseolus vulgaris roots highlight the role of ERs in natural niches and allowed the identification of common extrachromosomal genes expressed in association with plant rootlets and the replicons involved.


Assuntos
Raízes de Plantas/genética , Plasmídeos , Rhizobium , Agrobacterium/genética , Agrobacterium/metabolismo , Herança Extracromossômica , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Phaseolus/microbiologia , Plasmídeos/genética , Plasmídeos/metabolismo , RNA Ribossômico 16S , Replicon , Rhizobium/genética , Rhizobium/metabolismo , Rizosfera , Análise de Sequência de DNA , Sinorhizobium/genética , Sinorhizobium/metabolismo , Zea mays/microbiologia
16.
DNA Cell Biol ; 30(9): 633-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21595554

RESUMO

In many cases, bacterial pathogens are close relatives to nonpathogens. Pathogens seem to be limited lineages within nonpathogenic bacteria. Nonpathogenic isolates are generally more diverse and widespread in the environment and it is generally considered that environmental bacteria do not pose a risk to human health as clinical isolates do; this may not be the case with mycobacteria, but environmental mycobacteria have not been well studied. It is documented that several environmental mycobacteria constitute a source for human infections. Diverse mycobacterial environmental isolates are rarely involved in human disease. Environmental mycobacteria may have a role in degradation of different compounds. Environmental mycobacteria have had a long interaction with humans, maybe as long as the human species, and may have contributed to human evolution.


Assuntos
Microbiologia Ambiental , Mycobacteriaceae/fisiologia , Mycobacteriaceae/patogenicidade , Infecções por Mycobacterium/epidemiologia , Filogenia , Plantas/microbiologia , Demografia , Humanos , Funções Verossimilhança , Modelos Genéticos , Mycobacteriaceae/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
17.
Syst Appl Microbiol ; 33(6): 322-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20822874

RESUMO

The bacterial endophytic community present in different Phaseolus vulgaris (bean) cultivars was analyzed by 16S ribosomal RNA gene sequences of cultured isolates derived from surface disinfected roots and immature seeds. Isolated endophytes from tissue-macerates belonged to over 50 species in 24 different genera and some isolates from Acinetobacter, Bacillus, Enterococcus, Nocardioides, Paracoccus, Phyllobacterium, and Sphingomonas seem to correspond to new lineages. Phytate solubilizing bacteria were identified among Acinetobacter, Bacillus and Streptomyces bean isolates, phytate is the most abundant reserve of phosphorus in bean and in other seeds. Endophytic rhizobia were not capable of forming nodules. A novel rhizobial species Rhizobium endophyticum was recognized on the basis of DNA-DNA hybridization, sequence of 16S rRNA, recA, rpoB, atpD, dnaK genes, plasmid profiles, and phenotypic characteristics. R. endophyticum is capable of solubilizing phytate, the type strain is CCGE2052 (ATCC BAA-2116; HAMBI 3153) that became fully symbiotic by acquiring the R. tropici CFN299 symbiotic plasmid.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Phaseolus/microbiologia , Sementes/microbiologia , Bactérias/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , Ácido Fítico/metabolismo , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
18.
Syst Appl Microbiol ; 30(4): 280-90, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17293074

RESUMO

A new lineage of Ensifer nodulating the American legume Acacia angustissima in the tropical forest of Chiapas and Morelos, Mexico is described. Bacteria were identified as Ensifer with ssb or nolR specific primers. Phylogenetic analysis with partial sequences of the five chromosomal genes gyrA, nolR, recA, rpoB and rrs revealed that this new lineage is related to African Ensifer terangae. The results of total DNA-DNA hybridization and selected phenotypic tests among the A. angustissima strains and E. terangae indicated that they belong to different species. The phylogeny with the symbiotic nifH gene also separates this group as a different clade but with close affinities to bacteria belonging to the genus Ensifer isolated from American hosts. ITTG R7(T) (=CFN ER1001, HAMBI 2910, CIP 109033, ATCC BAA-1312, DSM18446) is the type strain of a new species for which the name Ensifer mexicanus sp. nov. is proposed.


Assuntos
Acacia/microbiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Genes Bacterianos/genética , México , Fixação de Nitrogênio/genética , Hibridização de Ácido Nucleico , Filogenia , Homologia de Sequência , Sinorhizobium/classificação , Especificidade da Espécie , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...